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Abstract. The paper discusses the metastable states of a quantum particle in a periodic potential under
a constant force (the model of a crystal electron in a homogeneous electric field), which are known as the
Wannier-Stark ladder of resonances. An efficient procedure to find the positions and widths of resonances is
suggested and illustrated by numerical calculations for a cosine potential, which are in excellent agreement
with complex scaling resonance energies.

PACS. 03.65.-w Quantum mechanics – 73.40.Gk Tunneling – 73.20.Dx Electron states in low-dimensional
structures (superlattices, quantum well structures and multilayers)

1 Introduction

The problem of quantum states of crystal electrons in a
homogeneous electric field had been of fundamental inter-
est since the early Bloch paper of 1929 [1]. This problem is
of considerable importance in physics, however, it meets
certain mathematical difficulties, which prohibit an ex-
act analytical solution even in the one-dimensional case.
In 1960 Wannier [2] took an attempt to overcome these
problems by introducing the so-called Wannier states. His
paper initiated a long discussion on the subject, which
continued more than 20 years (a historical review of this
discussion can be found in the introductory section of pa-
per [3] as well as in the more recent review [4]). During
this discussion an understanding was achieved that the
states of an electron in a homogeneous field, important
from the physical point of view, are a sequence of reso-
nances separated by equal energy intervals (the so-called
Wannier-Stark ladder of resonances [5,4]).

Recently the interest in the problem of Wannier states
was renewed by experiments with semiconductor super-
lattices [6] and optical lattices [7,8] (in optical lattices a
neutral atom plays the role of an electron). These new ex-
perimental objects offer a number of unique possibilities
and will definitely initiate a further progress in theory.
In view of this growing interest an efficient procedure for
a numerical calculation of Wannier states would be very
useful. In this paper we suggest such a procedure. It is
based on the presentation of a Wannier state as a Floquet
state, where the time period is given by the Bloch period.
The proposed method proves to be very simple, accurate
and fast.

a e-mail: Korsch@physik.uni-kl.de

The paper is organized as a sequence of short sections,
discussing a particular problem. In the introductory Sec-
tions 2.1 and 2.2 we briefly review the theory of Bloch and
Wannier states. Sections 2.3 and 2.4 describe the analyti-
cal approach, which constitutes the basis for our numerical
calculation of Wannier-Bloch and Wannier-Stark states
(we distinguish Wannier-Bloch and Wannier-Stark states
– the former is a continuous set of Bloch-like functions,
while the latter form a discrete set of localized states).
This analytical approach is based, as mentioned above, on
the Floquet formalism. It suggests a simple proof of the
existence of the “energy” (i.e. time-independent) Wannier
states. Although the energy states exist, we can not find
them numerically by diagonalizing the Floquet operator
as explained in Section 2.5. Fortunately this is not the
case for the metastable states or resonances. The results of
a numerical calculation of the metastable Wannier-Bloch
and Wannier-Stark states are presented in Section 2.6. In
Section 2.7 we compare the results with resonances cal-
culated using the method of complex scaling. Finally, in
the concluding section we summarize the results obtained
and compare our method with the most commonly used
analytical and numerical approaches to the problem.

2 Wannier states

We are interested in the states of a quantum particle in
a periodic potential plus a constant force (a model of an
electron in a crystal lattice under the influence of an ex-
ternal electric field):

Ĥ = Ĥ0 + Fx, (1)
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Ĥ0 =
p̂2

2
+ V (x), V (x+ 2π) = V (x). (2)

In what follows the analytical expressions are presented
for a general form of the potential, in the numerical cal-
culation we choose V (x) = cosx.

2.1 Bloch states

First we discuss the Bloch states of a quantum particle

with Hamiltonian Ĥ0. The Bloch states are known to be
the eigenfunctions of the Hamiltonian (2),

Ĥ0φl,k(x) = εl(k)φl,k(x), (3)

which are periodic in the quasimomentum k, −1/2 < k <
1/2. In addition to the periodicity we also request that
the φl,k(x) are analytic functions of k. This imposes some
restriction on a k-specific phase prefactor, up to which
the Bloch states are defined. It is also worthwhile to recall
that the φl,k(x) can be written as

φl,k(x) = exp(ikx)χl,k(x), (4)

where χl,k(x) is a periodic function in x satisfying the
equation

Ĥ
(k)
0 χl,k(x) = εl(k)χl,k(x), Ĥ

(k)
0 =

(p̂+ ~k)2

2
+ V (x),

(5)

χl,k(x) =
1
√

2π

∑
n

c(l,k)
n exp(inx).

Equation (5) is the basis for the numerical solution of the
eigenvalue problem (3). In fact, using the representation of
the periodic function |n〉 = (2π)−1/2 exp(inx), we reduce
the problem to a diagonalization of the real symmetric

matrices H
(k)
0 (n′, n). We note that the routine supplies us

with a set of real k-specific eigenvectors. Then, to insure
the analyticity of the Bloch function in k, we multiply
every eigenvector by the phase factor exp(iπk).

Figure 1a shows the spectrum εl(k) for the dimension-
less Planck constant ~ = 0.5. The first 5 bands are as-
sociated with classically bounded motion in the potential
well and are almost flat. Starting from the ground band,
their widths (i.e. the maximum differences between any
two energies of the same band) are 6.7×10−7, 3.6×10−5,
8.3× 10−4, 1.0× 10−2, and 6.6× 10−2. We note that the
widths of the low-lying bands are extremely small. This
allows one to construct from the extended Bloch states the
localized and almost nondispersive (i.e., quasistationary)
states

Φl,m(x) =

∫ 1/2

−1/2

dk exp(i2πmk)φl,k(x). (6)

These states are well-localized within the mth cell of the
lattice and resemble very much the states of a quantum

Fig. 1. (a) Spectrum of the Bloch functions for ~ = 0.5. (b)
First seven bands folded into the interval −π < Θ < π with
Θ = εl(k)T/~ and T = 2.5. The dotted lines indicate the posi-
tions (shifted by 3.04) of the first three most stable resonances
for F = 0.2.

Fig. 2. Dashed line – the localized quasistationary states
Φl,m(x) constructed from the Bloch states with l = 0 (a) and
l = 2 (b), the cell index is m = 0. Solid line – the ground
and second excited metastable Wannier-Stark states Ψl,m(x)
for F = 0.2.

particle in the “bounded” potential cosx, 0 < x < 2π. Fig-
ure 2 (dashed line) shows two states, Φ0,0(x) and Φ2,0(x),
in configuration space. In addition, for future use, Fig-
ure 3 shows these states in the momentum representation
(numerically we first construct the localized states in the
momentum representation and then convert to configura-
tion space by Fourier transformation).

2.2 Wannier-Bloch states

We proceed with the case F 6= 0. In this section we dis-
cuss the Wannier-Bloch states of the Hamiltonian (1) as
they were introduced by Wannier in 1960 [2]. According to
the cited paper these states are a Bloch-like solution
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Fig. 3. The same states as in Figure 2 but in the momentum
representation. Only the real part of the functions is shown,
the imaginary part looks similar.

of the equation[
p̂2

2
+ cosx+ F

(
x+ i

∂

∂k

)]
ψl,k(x) = εl(k)ψl,k(x). (7)

To prove the existence of such a solution Wannier used
an iterative procedure in powers of F beginning from the

Bloch state φl,k(x) of the Hamiltonian Ĥ0. In other words,
a solution was assumed to have the form

ψl,k(x) = ψ
(0)
l,k (x) + Fψ

(1)
l,k (x) + F 2ψ

(2)
l,k (x) + . . . ,

ψ
(0)
l,k (x) = φl,k(x). (8)

The states (7) are used to “decouple” (no interband
transition) the Bloch bands. In particular, provided the
functions ψl,k(x) exist, one can then construct the time-
dependent Houston-like functions

ψl(x, t) = ψl,k−Ft/~(x) exp

[
−
i

~

∫ t

0

εl

(
k −

F

~
t′
)
dt′
]
,

(9)

which satisfy the Schrödinger equation i~∂ψl(x, t)∂t =

Ĥψl(x, t) exactly. In zeroth order of F the functions (9)
coincide with the Houston functions [9], which are known
to be only an approximate solution of the time-dependent
Schrödinger equation neglecting interband transitions.

Three remarks on the Wannier states (8) should be
given. First, these states originate from the Bloch states,
which are not proper Hilbert space basis functions for the
unbounded operator x̂. Second, the “energy” εl(k) is not
unique – multiplication of the states ψl,k(x) by a phase fac-
tor exp[if(k)], where f(k) is an arbitrary analytic periodic
function, yields an additive term (F/~)∂f/∂k of the en-
ergy εl(k). Third, there is no proof for the convergence of

the functional series (8). The mentioned drawbacks make
the theory of Wannier-Bloch states somehow controver-
sial and have caused a long discussion on the subject [3].
In the next section we shall show that many of the de-
batable problems can be avoided just by introducing the
Wannier-Bloch states in a different way.

2.3 Wannier states as Floquet states

In the following section we adopt the formalism of Floquet
states developed earlier for studying quantum systems un-
der a time-periodic perturbation [10] to find the states of
the system (1).

Let us introduce the unitary operator Û of the system
evolution over the time interval 0 < t < TB, where TB =
~/F is the so-called Bloch period [11]

Û = exp

(
−
i

~

∫ TB

0

Ĥdt

)
. (10)

We define the Wannier-Bloch states as the eigenfunction
of the operator (10):

Ûψl,k(x) = exp

[
−
i

~
El(k)TB

]
ψl,k(x). (11)

It is shown below that, unlike the definition (7) given
by Wannier, this definition is mathematically correct and
causes no ambiguities. We shall give a proof for a more
general case

Ĥ =
p̂2

2
+ V (x, t) + Fx, (12)

where V (x, t) is periodic in time with a period T , which
is rational to the Bloch period TB:

V (x, t+ T ) = V (x, t), T =
r

q
TB, (13)

(this complication actually facilitates the understanding).
It is obvious that the case V (x, t) = V (x) is included here,
corresponding to an arbitrary choice of the integers r and
q. For the sake of simplicity we shall assume r = 1.

We look for solutions of the time-dependent Schrödin-

ger equation i~∂ψ(x, t)/∂t = Ĥψ(x, t) in the form

ψ(x, t) = exp(−iF tx/~) ψ̃(x, t). (14)

The substitution (14) eliminates the Stark term Fx and
leads to the Schrödinger equation with the Hamiltonian

H̃(t), which is just the original Hamiltonian Ĥ0 where the
momenta are shifted by Ft:

i~
∂ψ̃(x, t)

∂t
= H̃(t) ψ̃(x, t), H̃(t) =

(p̂− Ft)2

2
+ V (x, t).

(15)
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Because the Bloch period is assumed to be a multiple of
the time period of the potential V (x, t), the Hamiltonian
(15) possesses a “symmetry”

H̃(t+ TB) = e+ix H̃(t) e−ix. (16)

Now we introduce the unitary operator Ũ(t, 0) of the evo-
lution of system (15) over the time interval (0, t):

Ũ(t, 0) = êxp

(
−
i

~

∫ t

0

H̃(t)dt

)
(17)

(the hat over the exponential function denotes time or-
dering). Let us prove the following intermediate relation,
which is a direct consequence of the symmetry (16),

Ũ(t+ TB, TB) = e+ix Ũ(t, 0) e−ix. (18)

In fact, equation (18) holds for t = 0, when both sides
of the equation are the identity operators. It also holds
for other times as can be seen from a comparison of the
derivatives with respect to t of both sides of the equation.

Using the operator Schrödinger equation i~∂Ũ(t, 0)/∂t =

H̃(t)Ũ(t, 0) and the property (16), it is easy to check that
the derivatives do coincide, which proves equation (18) for
arbitrary t.

Equation (18) leads to the following useful relation

Ũ(nTB, 0) = e+inx
[
e−ix Ũ(TB, 0)

]n
, (19)

which can be proved by induction. On the basis of this
equation and using equation (14) we conclude that the
evolution of the original wave function ψ(x, t) can be de-
scribed in terms of a Floquet-like theory as

ψ(x, nTB) = Ûnψ(x, 0), (20)

where the operator Û is the product of the momen-
tum shift operator exp(−ix) and the unitary operator

Ũ(TB, 0):

Û = e−ix êxp

(
−
i

~

∫ TB

0

H̃(t′)dt′

)
. (21)

We also display another useful representation of the oper-

ator Û

Û = ÛqT ; ÛT = e−ix/q êxp

(
−
i

~

∫ T

0

H̃(t′)dt′

)
, (22)

which can be deduced from the Hamiltonian symmetry

H̃(t+ T ) = eix/q H̃(t) e−ix/q (23)

(compare with Eq. (16)) in the way described above.
The key point of the analysis is that for a spatially

periodic potential V (x + 2π, t) = V (x, t) the operator Û
commutes with the translation operator over the lattice

period, â = exp(2π∂/∂x), and, therefore, the formalism
of the quasimomentum can be employed. Then, after in-
troducing the periodic function χl,k(x),

ψl,k(x) = exp(ikx)χl,k(x), χl,k(x+ 2π) = χl,k(x),
(24)

the eigenvalue problem (11) takes the form

Û (k)χl,k(x) = exp

[
−
i

~
El(k)TB

]
χl,k(x), (25)

Û (k) = e−ixŨ (k), (26)

Ũ (k) = êxp

{
−
i

~

∫ TB

0

[
(p̂+ ~k − Ft)2

2
+ V (x, t)

]
dt

}
.

Equations (25, 26) are well-defined and, therefore, the
Wannier states do exist. In Section 2.6 we use these equa-
tions to calculate the metastable Wannier-Bloch states nu-
merically.

2.4 Spectrum of the Wannier-Bloch states
and Wannier-Stark states

So far we made no difference between the case of a time-
periodic potential V (x, t + T ) = V (x, t) and a time-in-
dependent potential V (x). This difference appears when
we discuss the (quasi-)energy spectrum El(k). It is pos-
sible to show that in the case of time-periodic poten-

tials (we recall that T = TB/q) the operators Û (k) and

Û (k+1/q) are unitarily equivalent and, therefore, the spec-
trum is q-fold degenerate [12]. The q-fold degeneracy can
also be proved using equation (22). In fact, the function

ψ′(x) = ÛTψl,k(x) has the Bloch index k′ = k − 1/q
but corresponds to the same value of the quasienergy:

Ûψ′(x) = ÛqT ÛTψl,k(x) = exp[−iEl(k)TB/~]ψ′(x). In the
case of a time independent potential the integer q can be
chosen arbitrarily and, therefore, the spectrum is com-
pletely degenerate, i.e. El(k) = El. This also implies the
continuous time evolution of the Wannier-Bloch functions
in the form

ψl,k(x, t) = e−iElt/~ ψl,k−Ft/~(x). (27)

We note that equation (27) has the typical structure of
a quasienergy function. This justifies the use of the term
“quasienergy” for El also in the case of time-independent
potentials, where the Bloch period TB should be consid-
ered as some intrinsic time-period of the system.

The degeneracy of the spectrum in the case of a time
independent potential allows one to introduce a discrete
set of eigenfunctions

Ψl,m(x) =

∫ 1/2

−1/2

dk exp(i2πmk)ψl,k(x). (28)

(compare with Eq. (6)) instead of the continuous set of
functions ψl,k(x). By construction the functions (28) are
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stationary functions, i.e., their continuous time evolution
has the form Ψl,m(x, t) = exp[−i(El+2πmF )t/~] Ψl,m(x).
Referring to the Hamiltonian (1), these states are associ-

ated with a set of discrete levels E
(l)
m = El + 2πmF and

form the famous Wannier-Stark ladder (note that TB =
~/F , and hence the Wannier-Stark ladder coincides with

the Floquet quasienergy ladder E
(l)
m = El + 2πm~/TB).

In the following we will consider only the case of time
independent potentials.

2.5 Numerical solution using Floquet theory

Since we have an explicit expression (26) for the unitary

operator Û (k) defining the Wannier-Bloch states, we can
try to find them numerically. However, the numerical solu-
tion of the eigenvalue problem (25) meets problems related
to the truncation of the matrices.

First we discuss the case F = 0. Figure 1b shows the
band structure of the system (2) obtained by diagonalizing

the unitary operators Û (k) = exp(−iĤ(k)
0 T/~), where we

set T = 2.5 to compare the result with the case F = 0.2
(with TB = 2.5). Because the matrix U (k)(n′, n) tends
asymptotically (|n′|, |n| → ∞) to a diagonal one, its trun-
cation causes no problem. It is also possible to truncate
first the Hamiltonian and then to calculate the evolution
operator by taking the operator exponent, what was ac-
tually done in our calculations (in the case of the Hamil-

tonian H̃(k)(t) the operator Ũ (k) is calculated using the
formula

Ũ (k) =
M−1∏
j=0

exp

[
−
i

~
H̃(k)(j∆t)∆t

]
, (29)

where ∆t = TB/M , M � 1). This procedure has the ad-
vantage that the obtained matrix is strictly unitary. The
first seven bands are shown in Figure 1b, which can be eas-
ily identified with the corresponding bands in Figure 1a.
Calculation of higher bands yields additional dispersion
curves without disturbing those already found. Unfortu-
nately this is not the case for the operator (26).

In fact, we should truncate both the matrix Ũ (k)(n′, n)
and the matrix

S(n′, n) = 〈n′| exp(−ix)|n〉 = δn′,n−1. (30)

By the reason indicated above the truncation (|n′|, |n| ≤

N) of the matrix Ũ (k)(n′, n) is a harmless procedure, but
the truncation of the matrix (30) explicitly violates the
unitarily of the operator. One can recover the unitarily of
S(n′, n) by replacing the zero in the lower corner of the
matrix by unity. However, this is equivalent to a periodic
boundary condition on the momentum and the problem
becomes only loosely related to the initial eigenvalue prob-
lem. As an example, Figure 4 shows the spectrum of the
truncated and “unitarized” operator (26) for two different
dimensions 2N + 1 of the matrices, N = 10 and N = 20.
It is seen that the details of the spectrum depend on N .

−0.5 0 0.5
−3

0

3

k

Θ

−0.5 0 0.5
−3

0

3

k

Θ

Fig. 4. “Energy spectrum” of the Wannier-Bloch states for two
dimensions of the truncated and “unitarized” matrix Û (k). The
positions of the resonance energies appear as (almost) horizon-
tal lines. The parameters are ~ = 0.5 and F = 0.2.

One should not be disappointed by the failure to find
the (quasi-)energies of the Wannier-Bloch states. In fact,
for the classical counterpart of the system (1), bounded
motion coexists with unbounded motion. For such a sys-
tem the notion of metastable states or resonances proves
to be more appropriate than the notion of energy states.
We discuss these metastable states of the system (1) in the
next subsection. It is, however, worthwhile to point out
that the positions of the resonances manifest themselves
in the “energy spectrum” of the Wannier-Bloch states in
Figure 4 by the (almost) horizontal lines at the phases
Θ = ETB/~ ≈ −0.765, +1.53 and −2.70. This behav-
ior closely resembles the one observed when resonances
are computed by the method of box-quantization (see,
e.g., [13]).

2.6 Metastable states

Two definitions of a metastable state or resonance are
mainly used: a “rigorous” one which defines resonances
as poles of the scattering matrix; and an “intuitive” one
which assumes the metastable state to be a “stationary”
solution of the Schrödinger equation with constant rate of
probability leakage. The simplest example of a metastable
state is the quasibound state of a quantum particle in
a potential like V (x) = x2 exp(−x), x ≥ 0 [14]. Being
considered in the finite interval 0 ≤ x < xmax (where
xmax essentially exceeds the width of the potential well),
this system has solutions of the form

ψl(x, t) = exp(−Γlt/2~) exp(−iElt/~)ψl(x), (31)

where El approximately coincides with the spectrum of
a particle in the well for a non-penetrable potential bar-
rier, and Γl/2 is related to the probability of tunneling
through the barrier. We would like to stress that the “in-
tuitive” definition of metastable states implicitly assumes
a truncation of the coordinate.
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Fig. 5. Expansion coefficients for the periodic part of the
metastable Wannier-Bloch (solid line) and Bloch (dashed line)
functions for l = 0 (a) and l = 2 (b), quasimomentum k = 0.

In this paper we use the “intuitive” definition. To find
the metastable Wannier-Bloch states one should follow the
prescription outlined above with the only difference that
the truncation of the coordinate is substituted by a trun-
cation of the momentum. In other words, we define the
metastable Wannier-Bloch state as a state satisfying the
equation

Ŵ (k)χl,k(x) = exp[−Γl(k)TB/2~] (32)

× exp[−iEl(k)TB/~]χl,k(x),

where Ŵ (k) is the operator (21) truncated in momentum
space. Numerically we calculate these states by diagonaliz-
ing the nonunitary matricesW (k)(n′, n). We found that for
sufficiently large matrices the spectrum of the metastable
states, unlike the Wannier energy spectrum (but similar
to the Bloch energy spectrum) discussed in the preceding
subsection, is insensitive to the dimension of the matrix
W (k)(n′, n).

As an example, we calculate the complex energy spec-
trum E = E − iΓ/2 of the metastable states for F = 0.2
and ~ = 0.5. The Bloch period is TB = 2.5, the di-
mension of the matrix is taken to be 2N + 1 = 41.
Within the numerical accuracy the “bands” are degener-
ate. The positions of the first three most stable bands are
E0 = −0.153, E1 = 0.305, E2 = 0.716. The correspond-
ing phases Θ = ETB/~ (modulo 2π) are Θ0 = −0.765,
Θ1 = +1.53, Θ2 = −2.70, in agreement with the posi-
tion of the horizontal lines in Figure 4. In comparison
with the field-free case F = 0, the most important mod-
ification is a shift in energy because of a change in the
potential minima, corresponding to a shift of 3.04 in the
phase Θ for F = 0.2 (see the dotted lines in Fig. 1b). The
obtained values of the imaginary parts, i.e. of the decay
coefficients, are Γ0/2 = 3.24× 10−9, Γ1/2 = 2.36× 10−6,
and Γ2/2 = 6.05 × 10−4. The next state has the value
Γ3/2 = 2.47× 10−2 and should be considered as very un-
stable.
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10

−0.5

0

0.5
−20

−15

−10

−5

0

nk

lo
g(

|c
|2 )

Fig. 6. Expansion coefficients for the ground metastable
Wannier-Bloch state (l = 0) as a function of k.

We also calculated the eigenfunctions χl,k(x) of the

operator Ŵ (k). Figure 5 shows χl,k(x) for l = 0, 2 and
k = 0 in the momentum representation and Figure 6 shows
the ground state (l = 0) as a function of k. The absolute

squares of the expansion coefficients c
(l,k)
n (see Eq. (5))

are plotted on a logarithmic scale and connected by lines.
For F > 0 the metastable states decay in the negative
x-direction, so that the metastable states are extended in
the negative n-direction in momentum space. If we ignore
the negative tail, the depicted functions coincide well with
the corresponding Bloch functions (dashed lines).

We proceed with the Wannier-Stark states. Similar to
the case of energy states, we can construct a set of lo-
calized metastable states using equation (28). Figure 3
shows the ground (l = 0) and second excited (l = 2)
localized state Ψl,m(p) with index m = 0 in the momen-
tum representation. For F 6= 0 there is a finite probability
to find a particle with an arbitrary negative momentum.
The increasing frequency of oscillations in the tail indi-
cates the fact, that a particle can be found arbitrarily
far from the origin x = 0. The family of states Ψl,m(p)
with the same l forms the Wannier-Stark ladder associ-
ated with the lth band. By Fourier transforming Ψl,m(p)
we obtain the metastable Wannier-Stark states in con-
figuration space (see Fig. 2, solid line). It is worthwhile
to note that neither the Wannier-Stark nor the Wannier-
Bloch states are normalizable states. Thus the labeling of
the vertical axis has only a relative meaning.

2.7 Wannier-Stark resonances using complex scaling

Since the Floquet method of calculating the Wannier-
Stark resonances is based on an intuitive (not rigorous)
definition of metastable states, one can doubt if the com-
plex energies found are “true” resonances. Therefore the
Floquet data are compared with data obtained by an in-
dependent method using complex scaling, which has been
proven to be very successful in solving many problems of
resonance scattering [15].
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−0.6
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0

E

Γ 
/ 2

Fig. 7. Complex resonance eigenvalues obtained from the com-
plex scaled Hamiltonian (o) compared with the Wannier-Stark
ladder obtained from the present method (+) as described in
Section 2.6.

Complex Scaling relies on the Balslev-Combes theo-
rem [16], which associates the resonances E = E − iΓ/2
with the square-integrable eigenfunctions of the complex
scaled Hamiltonian, H(p exp(−iθ), x exp(iθ)), provided
that θ > −E/Γ . It was shown that the theorem also holds
in cases where the asymptotic solutions of the Schrödinger
equation are not free waves, which is the case for the Stark
field [17] (see also the discussion in the review article [4]
as well as the analysis of the time-depended case [18]).

The Hamiltonian matrix elements, 〈ν|H(p exp(−iθ),
x exp(iθ)|ν′〉, ν, ν′ = 1, 2, . . . , N , are calculated using
particle-in-a-box basis functions |ν〉 = L−1/2sin(νπx/L),
where the center of the box coincides with one of the lo-
cal minima of V (x) + Fx. N = 500 basis functions are
used and the box-size L was taken as 10 periods of the
potential V (x). In the numerical calculations for the po-
tential V (x) = cosx (parameters F = 0.2, ~ = 0.5) a
smooth exterior complex scaling transformation is used,
which rotates x to the complex plane by θ = 0.3 rad. The
resonances are stable with respect to a small variation of
the scaling angle θ. The results of the matrix diagonal-
ization of 〈ν|H(p exp(−iθ), x exp(iθ)|ν′〉 are presented in
Figure 7 by circles.

First, we note that due to the finite box size only a seg-
ment ∆E ≈ FL = 4π ≈ 12.6 of the Wannier-Stark ladder
is spanned by the numerical complex scaling results. As
it is seen in Figure 7, the resonances are arranged along
10 strings, whose real parts are separated approximately
by the Wannier-Stark ladder spacing 2πF ≈ 1.26. The
finite box size and the finite basis set causes numerical
differences between the resonances of the different strings.
Also shown in Figure 7 are the resonances computed by
the novel method proposed in the present paper. The
Wannier-Stark ladders E + n2πF , n = 0, ±1, ±2, . . . of
these resonances are in good agreement with the complex
scaling results. As expected, the agreement is best for the

central strings. The numerical values for the three most
stable resonances are E0 = −0.15286770− i 3.2363851×
10−09, E1 = 0.30482723− i 2.3630620× 10−06 and E2 =
0.71553772− i6.0492101× 10−04 (present method), which
are in almost perfect agreement with the complex scal-
ing results E0 = −0.15286771 −i 3.2363488× 10−09, E1 =
0.30482722 −i 2.3630619× 10−06 and E2 = 0.71553771 −i
6.0492101× 10−04 (central string, where the best results
are expected). Thus both methods can be considered as
reliable. The advantage of the Floquet method is, however,
that it essentially reduces the numerical effort.

3 Conclusion

We calculated the positions and widths of the resonances
(or metastable states) for a quantum particle in the po-
tential V (x) = cosx + Fx. A generic relation of the
metastable states to the particle Bloch states in co-
sine potential (F = 0) was demonstrated. It should be
noted, however, that in spite of this generic relation the
metastable Wannier states can not be obtained from the
Bloch states by any iterative procedure. This fact was
proved before using rather sophisticated arguments. In our
approach it just follows from the different structure of the
evolution operator for the Wannier and Bloch problems.

We believe that it is useful to compare our approach
to find the resonances with the most commonly used ap-
proach based on the crystal momentum or Adams repre-
sentation. In this approach one looks for the solution of
the problem in terms of Bloch states, i.e.,

Φ(x) =
∑
l

∫ 1/2

−1/2

al(k)φl,k(x)dk. (33)

Since the Hamiltonian (2) is diagonal in the basis of Bloch
states, the eigenvalue problem for the Hamiltonian (1)
takes the form

iF
∂al(k)

∂k
+ εl(k)al(k) + F

∑
l′ 6=l

Xl,l′(k)al′(k) = εal(k),

(34)

where a periodic boundary condition on k should be im-
posed. If we neglect the coupling between the bands (by
Xl,l′(k) = 0), the solution (33) will have the form of the
functions (6), which now correspond to the discrete set of
levels

εl,m = 2πFm+ 〈εl〉, 〈εl〉 =

∫ 1/2

−1/2

εl(k)dk. (35)

Due to the coupling between the bands (Xl,l′(k) 6= 0) the
levels (35) gain a finite width and one aims at the calcula-
tion of this width (or decay coefficient) as a function of F .
This task is rather difficult both from an analytical and
numerical point of view. Actually the method can provide
a solution only for special forms of the periodic potential
corresponding to a finite number of Bloch bands [5].
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In our approach we first find the metastable Wannier-
Bloch states and then construct the localized states. If
one is only interested in the widths of levels, the latter
is unnecessary because the levels widths, as well as their
positions, are already defined by diagonalizing the matrix
W (k)(n′, n) for a single arbitrary value of k.

We also would like to stress that we find the resonances
for “an infinite crystal”. This differs from the larger part
of the other numerical studies, where one seeks for the
solution of the Schrödinger equation with the Hamiltonian
(1) in a finite interval (see [19], for example).

This research has been supported by the Deutsche Forschungs-
gemeinschaft (SPP “Zeitabhängige Phänomene und Methoden
in Quantensystemen der Physik und Chemie”).
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